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transformation to predictive science
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Brief Overview of Sandia National Labs

« Founded in 1945 during the Manhattan Project

— Primary mission was to design, produce ‘ v “ ,

v
and test all non-nuclear components of — _
nuclear weapons

» Security systems

Arming and fuzing systems
Safety systems
Instrumentation

Parachute systems and aerodynamic
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Sandia Has Many Diversified Missions

* Nuclear Weapon Stockpile Stewardship

— Ensure the stockpile is safe, secure, reliable, and can support
the United States' deterrence policy

» Nonproliferation and Assessments

— Reduce the proliferation of weapons of mass destruction, the
threat of nuclear accidents, and the potential for damage to the
environment

 Military Technologies and Applications
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p NW Stockpile Stewardship is Sandia’s

Primary Mission

« Weapons are currently no longer produced

« Sandia’s primary mission is to ensure the existing stockpile is
— Safe

» Ensure weapons don’t detonate after an accident (plane crash,
fire, etc...)

— Secure
» Ensure weapons cannot be detonated without authorization

— Reliable
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Science-Based Stockpile Stewardship
Leads to Predictive Computational Science

* Problems with a solely testing-based approach
— Eventually you run out of weapons to test
— Without underground testing, you can’t test the complete system
— Not predictive

» Science-based stockpile stewardship

— Develop comprehensive scientific models to assess safety, security,
reliability of weapons

« Understand how materials age
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;/" A Sampling of Areas of Interest for
Predictive Computational Science

Aerodynamics

Structures




What Does
“Predictive Computational Science” Mean?

A scientifically credible and justifiable statement that a
computation is capable of adequately capturing a physical/natural
process.

— Expert opinion is not sufficient
— This was not readily apparent to the original ASC program

Output
*
Output

Input Input




« The process of determining that a model implementation

accurately represents the developer’s conceptual description of
the model and the solution to the model.

— “Are the equations solved correctly?”

» Code verification:
— Finding and removing source code mistakes (bugs)

— Improving software using software quality assurance

Verification
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» Process for determining how incomplete knowledge or variability
of simulation inputs impact simulation results

— Characterization of input uncertainties
— Propagation of uncertainties through simulation to outputs
« Epistemic uncertainty -- “Lack of knowledge”
— Set representations
— Interval arithmetic
— Possibility/Evidence theo

Uncertainty Quantification




Validation

* The process of determining the degree to which a
model is an accurate representation of the real world

from the perspective of the intended uses of the
model.

— “Are we solving the correct equations?”

« Comparison of computational predictions to
experimental observations
— Quantitative assessment of experimental errors

— Quantitative assessment of total computational error
(numerical error + uncertainty)

— Identification of a metric indicating whether simulation
and experiment “agree”

Sandia
National
Laboratories



« V&V + UQ define a formal process for justifying predictive
capability
— Doesn’t say how to do it
— Doesn’t say what to do when it doesn’t work
* May not understand the physics
* May not be able to simulate at necessary level of fidelity
* May not be able to measure all uncertainties/errors

So What’s the Problem?
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Transformation to Predictive Science

« Computers, Computation, Information, and Mathematics
Center (CCIM) is trying to lead transformation to predictive
science at Sandia

— Algorithms research
— Incorporating state-of-the-art algorithms in production physics
simulation codes

» Obtaining accurate derivatives efficiently has been one of the
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}"What Do Derivatives Have To Do With

Predictive Science

* Verification

— Adjoint-based error estimation

— Sensitivity analysis to identify dominant physics
» Uncertainty quantification

— Taylor expansmns for uncertalnty propagation
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" Automatic Differentiation is an Enabling

Technology for Predictive Science

 Analytic derivatives improve robustness and efficiency
—Very hard to make finite differences accurate

* Infeasible to expect application developers to code analytic
derivatives

—Time consuming, error prone, and difficult to verify
—Thousands of possible parameters in a large code
—Developers must understand what derivatives are needed

* Not having analytic derivatives has been significant hurdle to
predictive science research

» Automatic differentiation solves these problems

Sandia
National
Laboratories
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What is Automatic Differentiation (AD)?

» Technique to compute analytic derivatives
without hand-coding the derivative
computation

» How does it work -- freshman calculus
— Computations are composition of
simple operations (+, *, sin(), etc...)
with known derivatives

— Derivatives computed line-by-line,
combined via chain rule
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How is AD Implemented?

» Source transformation
— Preprocessor implements AD

— Very efficient derivative code

— Works well for FORTRAN, some C

— Extremely difficult for C++

— OpenAD, ADIFOR, ADIC (Argonne National Lab & Rice University)

* Operator overloading
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How is AD Used In Computational Science?

Spatially discretized PDE:
f(’il,,u,p,t) =0
Temporal discretization (Backward Euler):

* Most AD uses have focused on
black-box application

—Trying to live up to the name Uy — Uy 1
“automatic” 7 ( Ag O UmP tn) =0
 AD is better used selectively as | Forward sensitivity problem:
a software engineering tool 8.):‘ (aa) N of (Bu) af _
—Only use AD for the hard oa \dp/ ~ du\dp/  9p
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Qualification of electronic devices in hostile environments
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Transient Sensitivity Analysis of a Bipolar
4 Junction Transistor Under Radiation

Sensitivities show dominant physics
time = 1.0e-03
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Moving Beyond Forward Sensitivities

» We are building on this
technology for Viu+ ae® =0, a€[0.5,1.5]
— Adjoint sensitivities '
— Second derivatives (SQP o
optimization) il
— Taylor polynomials (Time %o.s-
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Educational Needs and Opportunities

* Must change culture for predictive computational
science to be successful

—Single-point forward simulations are not sufficient
* By emphasizing these ideas in undergraduate/graduate
education, we can get there

« AD in particular is proving to be an important piece of
the solution

« Significant progress could be made by exposing AD
early in undergraduate education/research
—Prerequisites are basic calculus and programming skills

Sandia
National
Laboratories
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. AD Takes Two Basic Forms
zeR" f:R" > R™ y=f(x) e R™

» Forward Mode:
— Propagate derivatives of intermediate variables w.r.t. independent variables forward
Oc  Op Oa +6<,03b
Or; 0Oadxr; Obdx;
oy Of

= R"*P — =V
x=Vz, V € — 92— D

c=¢(a,b) =

— Change of variables

— Complexity

of




Charon Drift-Diffusion Formulation
with Defects

on
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